Quaternionic discrete series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternionic Discrete Series

This work investigates the discrete series of linear connected semisimple noncompact groups G. These are irreducible unitary representations that occur as direct summands of L2(G). Harish-Chandra produced discrete series representations, now called holomorphic discrete series representations, for groups G with the property that, if K is a maximal compact subgroup, then G/K has a complex structu...

متن کامل

Quaternionic Line-Sets and Quaternionic Kerdock Codes

When n is even, orthogonal spreads in an orthogonal vector space of type O-(2n 2,2) are used to construct line-sets of size (2nm1 + 1)2”-’ in W2”~’ all of whose angles are 90” or cos -1(2-(“-2)/2). These line-sets are then used to obtain quatemionic Kerdock Codes. These constructions are based on ideas used by Calderbank, Cameron, Kantor, and Seidel in real and complex spaces.

متن کامل

Universality of Holomorphic Discrete Series

The goal here is to recover an apocryphal result on the structure of holomorphic discrete series representations of symplectic groups Spn(R) and unitary groups U(p, q) for sufficiently high highest weight of the lowest K-type. The same sort of argument applies to other groups of hermitian type, for example the classical groups O(n, 2) and O∗(2n). For Sp(n), the maximal compact is isomorphic to ...

متن کامل

Prediction for discrete time series

Let {Xn} be a stationary and ergodic time series taking values from a finite or countably infinite set X . Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times λn along which we will be able to estimate the conditional probability P (Xλn+1 = x|X0, . . . , Xλn) from data segment (X0, . . . , Xλn) in a pointwise consistent way for a restricted ...

متن کامل

Quaternionic Reduction

The pseudo-Riemannian manifold M = (M, g), n ≥ 2 is paraquaternionic Kähler if hol(M) ⊂ sp(n,R)⊕sp(1, R). If hol(M) ⊂ sp(n, R), than the manifold M is called para-hyperKähler. The other possible definitions of these manifolds use certain parallel para-quaternionic structures in End(TM), similarly to the quaternionic case. In order to relate these different definitions we study para-quaternionic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of the American Mathematical Society

سال: 1999

ISSN: 1088-4165

DOI: 10.1090/s1088-4165-99-00045-x